Mark Abramov Page 1

CSCI381/CSCI780 NATURAL LANGUAGE PROCESSING

Homework 2

#1
p(pos) = 0.4
p(S|pos) = 0.09 *0.07 * 0.29 * 0.04 * 0.08 = 0.0000058464
p(pos) * p(S|pos) = 0.4 * 0.0000058464 = 0.00000233856

p(neg) = 0.6
p(S|neg)=0.16 * 0.06 * 0.06 * 0.15 * 0.11 = 0.000009504
p(neg)*p(S|neg)=0.6 * 0.000009504 = 0.0000057024

After simplifying the two products above, we conclude that:
[p(neg)*p(S|neg) = 0.0000057024] > [p(pos)*p(S|pos) = 0.00000233856]

Thus, the model predicts the class negative for the sentence “I always like foreign films”.

#2A
[implemented the Naive-Bayes classifier with bag-of-word features and Add-one
smoothing in the NB. py script, with pre-process.py which preprocesses the training
and test documents (see attached source code).

A difficulty I had when writing these scripts was how to output the pre-processed files so
that I would easily be able to input them into my NB. py script. | overcame this by using
JSON, a standard Python library. [wrote each pre-processed document (which was stored
as a Python dictionary) as a JSON on a new line. The NB. py script then took in each JSON
one by one from the files and turned them back into dictionaries which were appended to
the appropriate Array List.

By separating the task of pre-processing from the tasks of training and testing, the runtime
of NB. py is decreased to several seconds and pre-process.py script is only run once
on each dataset (training and testing).

Mark Abramov Page 2

#2B
The file movie-review-small-BOW.NB contains the pre-processed small corpus of
movies stored in vector format as follows:

{"comedy": {"couple": 1, "fly": 1, "fast": 1, "fun": 2}}
{"comedy": {"fun": 1, "couple": 1, "love": 2}}
{"action": {"fly": 1, "fast": 1, "shoot": 1, "love": 1}}
{"action": {"furious": 1, "shoot": 2, "fun": 1}}
{"action": {"fast": 1, "furious": 1, "shoot": 1}}

Feature values were saved as dictionaries instead of sparse vectors in order to save space.

The parameters of the model after training it on the small corpus are included in the file
movie-review-small.NB, a snippet of which follows:

Log prior probability of each class:
{'comedy': -1.3219280948873622, 'action': -0.7369655941662062}

Log likelihood of each word:

P(seduced | comedy) = -16.450180247164752
P(walid | comedy) = -16.450180247164752

P (gabba-gabba | action) = -16.450212472837737
P(furious | action) = -14.86524997211658
P(scholes | action) = -16.450212472837737

#2C
For the test document { fast, couple, shoot, fly}
- The log probability for class comedy is -63.537686582825216
- The log probability for class action is -61.630924889908634
The action class has a higher probability and therefore is the more likely class.

#2D
Accuracy
Out of 25,000 test documents, 20,368 were predicted correctly and 4,632 were predicted
incorrectly. This gives an accuracy of 81.472%.

Mark Abramov Page 3

Investigation

In the 4,632 incorrectly predicted documents, there were 989,015 tokens. The word “not”
comprised 652 of those tokens (0.066%) and the form “-n’ t” appeared in 547 of the
tokens (0.055%).

To contrast, in the 20,368 correctly predicted documents there were 4,443,763 tokens, the
word “not” comprised 765 of those tokens (0.017%), and “-n’ t” was in 965 tokens
(0.022%). These tokens occurred substantially less frequently in correctly predicted
documents.

The negation expressed by “not” or “-n’ t” might completely alter the inferences we
draw from the predicate following it in that document. In addition, negation can modify a
negative word to produce a positive review, and so give misleading results in a Naive-Bayes
Classification.

When investigating the probabilities for each word, I found the model reported:

P(not | pos) = -7.7155410739560235

P(not | neg) = -7.496980855242182

which are both very high numbers when compared with most words which received a log
probability of less than -20.

Experimentation

Although the standard Naive Bayes text classification with Bag-of-Words features did work
well for the movie review sentiment analysis, [experimented with a small change to
improve performance.

I noticed in the reviews that whether a word occurs in the document or not seemed to
matter more than the frequency of the word in the document. Therefore, I tried to improve
performance by clipping the word counts in each document at 1 (binary multinomial Naive
Bayes). For each document, I did not take into consideration how many times a word
appeared in the document, but only whether or not the word appeared in the document
(essentially removing duplicate tokens from each document).

This actually did improve my accuracy: the model predicted 20,739 documents correctly,
and predicted 4,261 documents incorrectly, giving an accuracy of 82.956% (up from
81.472%).

The parameters and predictions are stored in movie-review-EXPERIMENT-BOW.NB
and EXPERIMENT-output. txt.

Mark Abramov Page 4

pre—-process.py source code
import os

import sys

import json

def count frequencies (text):
freqg = {}
for word in text:
if word in freq:
freq[word] += 1
else:
freq[word] = 1
return freq

def ignore unseen words (words, vocab):
return [word for word in words if word in vocab]

def remove punctuation (text):
punctuation to remove = {'"', '*', v, v v/,
PP
new text = ""
for char in text:
if char is '!' or char is "?":
new_ text += " " + char
elif char not in punctuation to remove:
new_text += char.lower ()
return new_text.split()

def preprocess{():
feature vectors = []
for label in os.listdir (directory): # for each label
folder = os.path.join(directory, label)
if os.path.isdir(folder):
for filename in os.listdir (folder): # for each document
if filename.endswith (".txt"):
f = open(os.path.join(folder, filename), "r")
words = remove punctuation (f.read())
words = ignore unseen words (words, vocab)
feature vectors.append({label: count frequencies(words)})

f.close ()
output name = "movie-review-" + directory.replace("/", "").replace("all-reviews", "BOW") +
" NB"
output = open (output name, "w")

for line in feature vectors:

output.write (json.dumps (line) + '\n')
output.write (parsed)
output.close()

directory = sys.argv[l]
vocab = set([line.rstrip() for line in open('all-reviews/imdb.vocab')])
preprocess ()

Mark Abramov Page 5

NB.py source code
import sys

import json

import math

def get inputs():
training = sys.argv[1l]
test = sys.argv[2]
model output file = sys.argv([3]

predictions output file = sys.argv[4]

vocab = set([line.rstrip() for line in open('all-reviews/imdb.vocab')])
documents = []

classes = {}

test_docs = {}

training file
training file = open(training, "r")

for line in training file.readlines():
vector = json.loads (line)
documents.append (vector)
label = list(vector.keys()) [0]
if label in classes:
classes[label] .append(vector[label])
else:
classes[label] = [vector[labell]]
The following code replaces the previous loop if using binary NB
for line in training file.readlines():

vector = json.loads (line)

documents.append (vector)

label = list(vector.keys()) [0]

clipped = {word: 1 if count > 0 else 0 for word, count in vector[label].items()}
if label in classes:

classes[label] .append(clipped)

else:

classes([label] = [clipped]

training file.close()

test file
test file = open(test, "r")

for line in test file.readlines():
vector = json.loads (line)
label = list(vector.keys()) [0]
if label in test docs:
test _docs[label].append(bow_to list(vector[labell]))

else:
test docs[label] = [bow to list(vector[labell])
The following code replaces the previous loop if using binary NB
for line in test file.readlines():
vector = json.loads (line)
label = list(vector.keys()) [0]
if label in test_docs:
test_docs[label].append(vector[label].keys())
else:
test docs[label] = [vector[label].keys()]

def

def

def

def

Mark Abramov Page 6

test file.close()

return documents, classes, vocab, test docs, model output file, predictions output file

train nb(documents, classes, vocab):
total num_ of documents = len(documents)

{}

log prior

bow for each class = {}
log likelihood = {}
num of words in each class = {}

for label, docs_in the class in classes.items():

calculate P(c) terms

num of documents in this class = len(docs_in_the class)

log prior[label] = math.log2(num of documents_in this class / total num of documents)
bow for each class[label] = {}

num of words in each class[label] = 0

for doc in docs_in the class:
for word, value in doc.items () :
num_of words_in each class[label] += value
if word in bow_for each class[label]:
bow_for each class[label] [word] += value
else:

bow for each class[label] [word] = value

calculate P(w|c) terms
for word in vocab:
count = 0
if word in bow_for each class([label]:
count = bow_for each class[label] [word]
log_likelihood[(word, label)] = math.log2(
(count + 1) /
(num_of words in each class[label] + len(vocab)))
return log prior, log likelihood, bow for each class

arg_max(d) :
v = list(d.values())
k = list(d.keys())

(
[

return k[v.index (max (v))]

test nb(test doc, classes, vocab, log prior, log likelihood):
sum_of log probs = {}
for label, docs in the class in classes.items():

sum of log probs[label] = log prior[label]

for word in test _doc:

if word in vocab:
sum_of log probs[label] += log likelihood[(word, label)]

print ("probability of class", label, "is", sum of log probs([label]

return arg max(sum_of log probs)

answer questions():
documents, classes, vocab, test docs, model output, predictions_output = get inputs()
log prior, log likelihood, bow in each class = train nb(documents, classes, vocab)

Mark Abramov Page 7

results = {True: 0, False: 0}
predictions = "Document # \t Predicted Label \t Actual Label\n"
num = 1

for label, documents in test docs.items():
for document in documents:
test result = test nb(document, classes, vocab, log prior, log likelihood)
results[test result == label] += 1
predictions += "\t" + str(num) + "\t\t | \t\t" + test result + "\t\t | \t\t" +

label + "\n"

def

def

num += 1
model output file = open(model output, "w")
model = "Log prior probability of each class:\n" + str(log prior) + \
'\n\nLog likelihood of each word: \n' + pretty prob(log likelihood)
model output file.write (model)
model output file.close()

predictions output file = open(predictions output, "w")
accuracy = results[True] / (results[False] + results[True]) * 100
predictions += "Total: " + str(results) + ". Accuracy: " + str(accuracy) + 'S$'

predictions output file.write(predictions)
predictions output file.close()

pretty prob(dic):
pretty = ""
for key, val in dic.items():

w = str(key[0])

c = str(key[1l]

pretty += 'P(' + w + ' | ' + c + ') ="' 4+ str(val) + '\n'
return pretty

bow_to_ list (bow):
output = []
for word, freqg in bow.items():
for 1 in range (freq):
output.append (word)
return output

answer_questions ()

movie-review-BOW.NB (parameters of the model) snippet

Log prior probability of each class:

{'pos': -1.0, 'neg': -1.0}

Log likelihood of each word:

P(mache | pos) = -21.480827172679707

P (succeeded | pos) = -15.988974076350031

P (underscripted | pos) = -21.480827172679707
P(fdny | pos) = -19.158899077792345

P (dankness | pos) = -21.480827172679707
P(consciously | pos) = -19.158899077792345
P(paint-by-numbers | pos) = -20.480827172679707
P (punch-drunk | neg) = -21.44954011629902
P(caswell | neg) = -21.44954011629902

P(hyper-critical | neg) = -21.44954011629902

Mark Abramov

P(assigns | neg) = -21.44954011629902
P(sonar | neg) = -21.44954011629902
P(mailed | neg) = -20.44954011629902
P(first-aid | neg) = -20.44954011629902

movie-review-BOWtrain.NB snippet (training file)

n "w. n

2, "is": "an
"has": 1,
"least":
1, "like":
"small"™: 1,
1, "this":
3, "cinema":
1,
"ones":
1,

"saw":

"triers":
1, 1,
1, "story":
9, "whole": 1,
"it": 2, 2,
"in 1, "my 2, "opinion":
1, "piece": 1, "of":
"think": 1, "perhaps":
1, 1, "other": 1,
"favorite": 1, "final": "scene": 1, "harrowing":
{"spoiler": 1, 2, "br": 4, 1, 1, "this": 2, "film":
1, "back": 1, "its": 2, "lovely": 2, "story": 2, "about": 2,
"wants": 1, "to": 2, "drink": 1, "his": 2, "mothers": 1, "milk": 1,
1, "but": 1, ": 1, "thinks": 1, "he": 2, "is": 1, "old":
"up 2, "lusting": 1, "after": 1, "another": 1, "ladies": 1
"competition": 1, "with": 1, "brother": 1, "fancies": 1,
1, "husband": 1, "of": 2, "woman": 1, "cannot": 1, "get":
"cheeky": 1, "yet": 1, "warm": 1, "love": 1,
"be": 1, "put": 1, "off": 1, "by": 1, "sub-tit-les":
1, "the": 5, "worst": 1, "film": 2, ": 3, "have":
1, "time": 3, "br": 7, "not": 3, "only": 1, "that":
"nothing": 1, "to": 2, "do": 2, "with": 1, "other": 1,
1, "is": 2, "obvious": 1, "flat": 1, "and": 1,
are": 1, "nice": 1, "though": 1, "but": 2,
1, "soft": 1, "porno": 1, "would": 2, "possibly":
"seems": 1, "very": 1, "bad": 1, "made": 2,
1, "older": 1, "never": 1, "visited": 1, "college": 1,
"who": 1, "did": 1, "could": 1, "really": 1, "laugh":
1, "something": 1, "else": 1}}
"what": 1, "could": 1, "have": 1,
9, "mill": 1, "mediocre": 1, "film":
"subtle": 1, "free-love": 1, "creators":
2, "scenario": 2, "after": 2, "and": 4,
"a": 2, "trite": 1, "little": 1, "cherry":
1, 1, "did": 2, ": 2, "feel":
"or": "anna": 1, "paquin": "their": 1,
1, "life": 1, "emasculated":

{"pos": {"lars": 1,
2, "film":
" 1, "to":
2,

nin.

von 2,
"that":
"tell":

"the":
1,

1!
"trier":
1, "at":

"europa":
1’
1!

5,
"a":
1,
1,
"television":

2, 4,
1, 1,

"scariest": "gothic": 1,

1, 1, "but": 1,
"scenes": 1, "ever":

2,
3, "very":
"he": 1,
"experience":
1,

"good": "o
1,
1,
"if":
2, "tricks":
1, "and": 2, "moving":
"list"™: 1, "also": 1,
"right": 1, "there":

4,
2,
1,

"see":

"

way
"with":

1,

e "was":
2,

1,

"on":

", " "most":
"then":
ll

"too":

"films":

"are
1!

11}
1,

{"pOS": min.
1/

1,

"years":
"who": 3,
"the": 1, "breast":
"it": 1, 2,
1, "and": "

"throw":
1,
1,
{"neg":
"for":

"has":

"pie":

1,
2,
"greater":
2,
1, "anyone":
"of": 1,
{"neg": {"in": 3,

1, "of": 2, "the":
"sixties": 1,
"ridiculous":
"with": 1,
"at": 1, "no":
"lane": 2,
1,

she
"ends": "
3,
1,
1,
"Jugs": 1,
{"this":
2, 3,
1, "nearly":
1,

"funny":

in 2,
"jealous":
1,
1,

"was":

" " "have":
"dont":
3’
"long":
1,

lI

you
1/
"4
i
Hall: 3,
"movies":
lI
"watching":
1/
"audience":
1!

"save":

"story":
"girls": 1,
2, "cheap":

"than": 2,

"

ll
"sex": 1,

1,

"been":
4,
1,
"top":
1,
2,
"troublesome":
1, 1,

1,
"about":
"this": 2,
2, "it":
"happily": 1,

"sympathy":

an 1,
3,
"pile": 1,
2, "all":
"ever":
1,
1,

"time": "i "for":
ll

"free":

1’

"care": "nor": 1, "liev":

"story": 1, "line": 1, "plods": 1, "along": 1, "slowly": 1, "to": 2, "its": 1,
1, "pathetic": 1, "conclusion": 1, "only": 1, "thing": 1, "interesting": 1,
"is": 1, "stunning": 1, "topless": 1, "hint": 1, "occurs": 1, "minutes": 1,

1, "forward": 1, "that": 1, "part": 1, "skip": 1, "rest": 1}}

movie-review-BOWtest.NB snippet (test file)

nymn "like":

6,

"lion":
1/

"the": "wind":

"good":

10,

2,
4,

5,
4,

1,
2,

"and": 5,
"thought":

("pos": {
it 14,

1, "very":
"that": 2,

"was "am: "movie":

"complete":
ll

"around":

"young":

"extremely":
1,
"did":
1,

"screen":

one

’

"her":
"friendship":
l’
"american":
"spending":
"he .
nagn:
"seriously":

"about":

"otherwise":
"infidelity": 1,

"shrieber":

"into":

1,

"since":

on
1,
2,

2,
"middle-class":

Page 8

1,
"stylized":
2, "have":
"even": 2,
1, "all":
"real":
1,

2,
"top:
17

"o

2,
a": "few":
1,
"at":
1, 1,
"breasts":
1,
"aroused":
1,
"hehe":
"seen":
"it": 1,

5!
"fella":
1,

"for":

1,

"pairs":

1}1}
1,

2,

"absolutely":

1, "your":
2,

1, "an":
"doubt":
1,

1,
1,

".

"any

" 2,
"off": 1,
"ending": 1,
"diane": 2,
1,

1,

"predictable":
"watchable":

1,

1, "fast":

"much":
ll

2,

ity

Mark Abramov

1, 2,
"amazed": 1,
"everyone": 1,
1, "during": 1,
"if": 1, "high": 2,

"show": 1, "from":
"they": 1,
"sit":

"movie": 4,

1, "young": "made": "so":
"after": 1,
"friends": 1,
"in": 1, "treated":
"americans": 1,

"definitely": 1,
"grandparents": 1,
"old": 1, "cousins": 1,
{"pos": {"this": 3,
"and": 3, 3, "stunning": 1,
"my": 1, "opinion": 1, "best": 1,
"with": 1, "child": 1, "from": 1,
"casted": 1, "city": 1, "of": 1,
1, "that": 2, "are":
"worse": 1, "than": 1,
"unfortunately":
"till":

"violent":

lI

"saw": 1,

"long":
"of": 3,
2, "to":
"early": 1,
"school": 1,
1, "point":
"bought": 1,
1, "down": 1,
"has": 1, "
"the": 13,
"brazilian":
"children": 3,
"de":
"arrested":
1,

1 "
’

"showed":

an":

ngn.

"rio": 1,
2,
"alcatraz":
1, 1,
1, 1,
1, "movies": 1,
"because": 1, "hard": 1}}
{"i": 7, "saw": 1, "this": 9, "with":
"but": 4, "don't": 1, "she": 4,
4, "reindeer": 1, "in": 6,
"got": 1, "hit": 2, "sleigh":
3, "good": 1, "we": 1,
"say": 1, "grandma":
"sad":

"every":

"criminal":
"much": 1,

"policeman": 1,
"does": 1,
" " 1, "like": 1,
1, "room": 1,

"not":
"happen": 1, "today":
who
"off":
{"neg":
"it": 2,
"pby": 3, "a":
3, "movie": 3,
"thought": 1,
"thats": 1, "how": 1,
"them": 1, "that": 2, "agreed": 1,
1, "just": 1, "dumb": 1,
"mean": 1, "daphne": 1,
"ground": 1, "think": 2,
"off": 1, "ok": 1, "give": 1,
{"neg": {"like": 1, 1,
"this": 1, "guy": 1, "isn't":
"society": 1, "has": 1,
1, "hearing":
1,

"unworthy":

2,
"did":
"the":
2,
"was":
3, "
1,
3,
"dang": 1, 1,
"died": 1, "weird": 1,
"out": 1, "of": 1}
2,
3,

"dog":

"emo":

"sure":
1, "
"morbid": 1,
1, "him": 2,
1, "drinks":
"mystique": 1,
1,
"mountain": 1,
1,
1,

llilmll:
an "very":
"funny": "talk": 1,
1, "but":
"anyway": 1,

"coffee":
ll

"moron":

"smokes":
1,
"that": 1,
"disprove": 1,
"should": 1, "be":
1, "kind":

2/

"racist": 1,
llof":
"forgotten":
"which": 1,

"using": 1,
3,
1, "by":

"normally":

1,

"any": 1,

output. txt (predictions) snippet
Predicted Label
| pos

Document #

| neg
| pos
| pos
neg
| pos
| pos
| neg

O 00 J o U > W N K-

| pos

ago
"how":
2!

wEor™
"watched": 1,

"argentine": 1,
2’

"purely": 1,

"must":

3,

"watched":
any": 2, "way": 1,
"would":
"dressed":
"goth": 1,

"other"

"fascination":
"about": 1,

"the":

"evidence": 1,
"time":

Page 9

": 1, "wouldn't":
2, "my": 5,
"because": 1,

"by": 1,
"history": 1,

1, "all": 1, "but":
"family"™: 1, "liked": 5,
1, "people":
"french": 1,
"teacher": 1, "would":
1, "this": 1,
"little": 1,

ll
"arabs": 1,
"even":
1/
"out":

"germans": 1,

1, "view": 1,
: 1,

"give":
"themselves": 1,
"br": 1}}
1, "outstanding": 1,
"hector": 1,
"made" :
1,
1, "janeiro":

"year":
"acting": 1,
4’
1!

"were":

"by":

"ipn":

4,
4,
"filmed":
1,
"about":

nig".
1!

"weren't":

"ever": 1, "was":
"actors": 1,
1,
1, "correctional": 1,
1, "raped": 1,
"fiction": 1, "brazil": 1,

"for": 1, "those":

"your": 1,

1,
"looks":
1,
"it":
1,

"mother":

"story": 1,
"prison": 1,
"constantly": "beaten":
lI
ll

"see": 1,

"but": "take": 1, 1,

"my": 5, "kids": 4, "love":
1, "get": 2, "run": 1,
3, "what": 2, "heck":
"why": 5, "when": 2, "heard": 1,
1, "daddy": 2, "granny":
"said": 1, "told": 1,
"name": 1, "there":
1, "black": 1, "looked": 3,
"girl": 1, "found": 1, "on":
1, "should": 1, "take": 1,

"they": 7, 2,
"overfed": 1,

2, "crappy":

"not":
9, "song":
"like": 4,
1,

"were": 1,

2, "one": 4, 1,
neon .
17

"show":

2,
"gone": 1,
}

: 1, "people": 1,
1, "worthwhile":
1, "with": 2,

"how":

"have": 1, "said":
1, "subject": 1,
"death": 1, "and":
2, "much": 2, "he":
"giving": 1, "himself": 1,
3, "bottom": 1, 1,
"feeble": 1, "methods": 1, "to":
"holocaust": 1, 1,
1, 1, "in": 1,
"wouldn't": 1, "fault":

1,
"our":
3,
3,
"an":
2,
"try":
1,
1,

"for":

1,

"into": 1,
HiS".
2/
"such":

"line":
1!
"asll:
"love":
ll

"morris":

niv. 1, 1}

Actual Label
| pos
| pos
| pos
| pos
| pos
| pos
| pos
| pos
| pos

Mark Abramov

Total:

24994
24995
24996
24997
24998
24999
25000
{True:

20368,

False:

pos
neg
neg
neg
neg
neg
neg
4632} .

Accuracy:

81.472%

neg
neg
neg
neg
neg
neg
neg

Page 10

